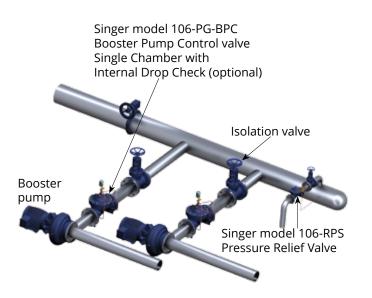
MODELS 106-PG-BPC / 206-PG-BPC BOOSTER PUMP CONTROL VALVE — SINGLE CHAMBER

KEY FEATURES

- Substantially reduces pump starting and stopping surges
- Separate opening and closing speed controls
- Cost effective pump control system
- Optional internal mechanical drop check reduces power failure surge

PRODUCT OVERVIEW

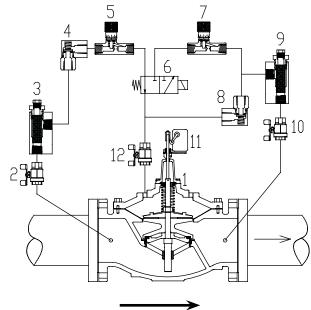
The 106-PG-BPC or 206-PG-BPC booster pump control valve is installed in-line directly downstream of the pump discharge.


The valve is normally closed, and, on pump start-up, a pilot solenoid is energized to slowly open the valve, at a rate governed by the opening speed control. The pipeline flow is gradually increased.

When shut-down is required, the pilot solenoid is de-energized to close the main valve and reduce the flow. The pump is kept running while the booster pump control valve slowly closes. When the valve is almost fully closed and flow is virtually stopped, a cam triggers the limit switch to stop the pump.

With the internal drop check option, the built-in mechanical drop check closes immediately when the flow stops, regardless of the valve position. Whether due to a control malfunction, normal operation or a pump motor power failure, by closing before flow reverses, surges are minimized.

The single chamber construction facilitates supplemental modulating functions such as pressure sustaining, pressure reducing, rate of flow control. Being a single chamber design, the control forces are generated by the differential across the valve. When a modulating function is included there are more positive initial closing results.


TYPICAL APPLICATION

SCHEMATIC DRAWING

- 1. Main Valve 106-PG or 206-PG
- 2. Isolation Valve
- 3. Strainer 40 mesh stainless steel screen
- 4. Check Valve model 10
- 5. Micrometer Needle Valve closing speed
- 6. Solenoid Valve three way, NEMA 4
- 7. Micrometer Needle Valve opening speed
- 8. Check Valve model 10
- 9. Strainer 40 mesh stainless steel screen
- 10. Isolation Valve
- 11. Model X129 Limit Switch Assembly NEMA 4, SPDT
- 12. Isolation Valve

Internal Drop Check Feature (optional, not shown)

Schematic A-7254C

STANDARD MATERIALS

Standard materials for pilot system components are:

- ASTM B-62 bronze and ASTM B-16 brass
- AISI 303 / 316 stainless steel trim

Refer to Electronic Control section (SPC product), see page 203, and consult Singer Valve for pump control panel options.

SELECTION SUMMARY

- The model PG-BPC, booster pump control valve incurs continuous head loss while the pump is operating. Refer to the 106 or 206 performance curves (see Technical & Sizing Information section, page 231). Use drooping portion of curve. Select the smallest size with a pressure drop that is acceptable.
- 2. With no modulating pilot functions added, care should be exercised not to oversize the valve, especially if pumps are operating in parallel. With very low differential across the valve, initial closing speed will be slow. Sections 106-PG and 206-PG (Main Valve section, page 11), provide specifications and details of construction of the standard main valves while bulletin IDC Internal Drop Check (see Main Valve Options section, page 70) provides details on the internal mechanical check option.
- 3. Standard configuration provides for NEMA 4 watertight enclosures for the Honeywell model OP-AR, Single Pole Double Throw limit switch and the ASCO solenoid with 120VAC / 60Hz (or 220VAC / 50HZ or 240VAC / 60Hz) coil. For other electrical service or higher pressure ratings consult with Singer Valve. A manual override is available upon request.

ORDERING INSTRUCTIONS

Refer to page 244 for the order form and ordering instructions.

Additionally, include the following information for this product:

- 1. Single chamber (106) or (206)
- 2. Solenoid voltage
- 3. Maximum inlet pressure

MODELS 106–PG–BPC / 206–PG–BPC BOOSTER PUMP CONTROL VALVE – SINGLE CHAMBER

106-PG-BPC	Flow Coefficient C _y (See 106-PG in Main Valve Section for other Valve Data)						
Size (inches)	2 in	2-1/2 in	3 in	4 in			
Size (mm)	50 mm	65 mm	80 mm	100 mm			
C _v ¹	55	80	110	200			
K_v ²	13	19	26	47			

106-PG-BPC	Flow Coefficient C _v (See 106-PTC in Main Valve section for other valve data)								
Size (inches)	6 in	8 in	10 in	12 in	14 in	16 in	20 in	24 in	36 in
Size (mm)	150 mm	200 mm	250 mm	300 mm	350 mm	400 mm	500 mm	600 mm	900 mm
C _v ¹	460	800	1300	2100	2575	3300	5100	7600	16340
K _v ²	110	190	310	500	610	780	1210	1800	3875

206-PG-BPC	Flow Coefficient C _v (See 206-PG in Main Valve Section for other Valve Data)						
Size (inches)	4 in	6 in	8 in	10 in			
Size (mm)	100 mm	150 mm	200 mm	250 mm			
C _v ¹	150	250	505	985			
K_v ²	36	60	120	230			

206-PG-BPC	Flow Coefficient C _y (See 206-PTC in Main Valve section for other valve data)							
Size (inches)	12 in	16 in	18 in	20 in	24 x 16 in	24 x 20 in	36 x 24 in	40 x 36 in
Size (mm)	300 mm	400 mm	450 mm	500 mm	600 x 400 mm	600 x 500 mm	900 x 600 mm	1000 x 900 mm
C _v ¹	1550	2200	3300	3400	3500	5300	7800	18000
K _v ²	370	520	780	810	830	1210	1850	4265

 $*C_v$ = USGPM at 1 psi pressure drop

 $*K_v = L / s$ at 1 bar pressure drop

(Q=C_∨√∆P)